31 research outputs found

    Large-vessel stenosis in the patients with ischemic stroke in Iran: Prevalence, pattern, and risk factors

    Get PDF
    Background—Large artery disease (LAD) is a common cause of stroke, but a little is known regarding its role in Iranian stroke patients. The current study investigates the prevalence and risk factors for cervicocephalic arterial stenosis in the patients with ischemic stroke using digital subtraction angiography (DSA). Methods—This was a prospective cross-sectional study performed in hospitals affiliated to Shiraz University of Medical Sciences from March 2011 to March 2013. Patients with ischemic stroke underwent noninvasive vascular and cardiac investigations to find the etiology of the stroke. Patients suspected of having large artery stenosis underwent DSA. The severity of the stenosis was calculated according to the North American Symptomatic Carotid Endarterectomy (NASCET) and Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) Trial criteria. The presence of cigarette smoking, hyperlipidemia, hypertension, and diabetes mellitus were documented for all subjects. Results—A total of 3703 stroke patients were identified. Of them, 342 patients (62.3%, male) underwent DSA for LAD. The mean age at the time of angiography was 66.7±10.3 years. Extracranial and intracranial arteries were involved in 305 (89.2%) and 162 (47.4%), respectively. And 301 patients (88%) had anterior circulation and 128 patients (37.4%) had posterior circulation involvement. Diabetes mellitus but not age, sex, hypertension, hyperlipidemia, or smoking was significantly associated with intracranial involvement. (P = 0.002) Conclusion—It can be concluded that the distribution of the large arterial atherosclerotic disease in Iran is similar to that seen in North America and Europe. Intracranial stenosis was more prevalent in diabetic patient

    Overall 5G-MoNArch architecture and implications for resource elasticity

    Get PDF
    Proceeding of: 2018 European Conference on Networks and Communications (EuCNC), June 18-21, Ljubljana, SloveniaThe fifth generation (5G) of mobile and wireless communications networks aims at addressing a diverse set of use cases, services, and applications with a particular focus on enabling new business cases via network slicing. The development of 5G has thus advanced quickly with research projects and standardization efforts resulting in the 5G baseline architecture. Nevertheless, for the realization of native end-to-end (E2E) network slicing, further features and optimizations shall still be introduced. In this paper, essential building blocks and design principles of the 5G architecture will be discussed capitalizing on the innovations that are being developed in the 5G-MoNArch project. Furthermore, building on the concept of resource elasticity introduced by 5G-MoNArch and briefly resummarized in this paper, an elasticity functional architecture is presented where the architectural implications required for each of the three dimensions of elasticity are described, namely computational, orchestration-driven, and slice-aware elasticity.This work has been performed in the framework of the H2020 project 5G-MoNArch co-funded by the EU

    5G Radio Access above 6 GHz

    Get PDF
    Designing and developing a millimetre-wave(mmWave) based mobile Radio Access Technology (RAT) in the 6-100 GHz frequency range is a fundamental component in the standardization of the new 5G radio interface, recently kicked off by 3GPP. Such component, herein called the new mmWave RAT, will not only enable extreme mobile broadband (eMBB) services,but also support UHD/3D streaming, offer immersive applications and ultra-responsive cloud services to provide an outstanding Quality of Experience (QoE) to the mobile users. The main objective of this paper is to develop the network architectural elements and functions that will enable tight integration of mmWave technology into the overall 5G radio access network (RAN). A broad range of topics addressing mobile architecture and network functionalities will be covered-starting with the architectural facets of network slicing, multiconnectivity and cells clustering, to more functional elements of initial access, mobility, radio resource management (RRM) and self-backhauling. The intention of the concepts presented here is to lay foundation for future studies towards the first commercial implementation of the mmWave RAT above 6 GHz.Comment: 7 pages, 5 figure

    A flexible network architecture for 5G systems

    Get PDF
    In this paper, we define a flexible, adaptable, and programmable architecture for 5G mobile networks, taking into consideration the requirements, KPIs, and the current gaps in the literature, based on three design fundamentals: (i) split of user and control plane, (ii) service-based architecture within the core network (in line with recent industry and standard consensus), and (iii) fully flexible support of E2E slicing via per-domain and cross-domain optimisation, devising inter-slice control and management functions, and refining the behavioural models via experiment-driven optimisation. The proposed architecture model further facilitates the realisation of slices providing specific functionality, such as network resilience, security functions, and network elasticity. The proposed architecture consists of four different layers identified as network layer, controller layer, management and orchestration layer, and service layer. A key contribution of this paper is the definition of the role of each layer, the relationship between layers, and the identification of the required internal modules within each of the layers. In particular, the proposed architecture extends the reference architectures proposed in the Standards Developing Organisations like 3GPP and ETSI, by building on these while addressing several gaps identified within the corresponding baseline models. We additionally present findings, the design guidelines, and evaluation studies on a selected set of key concepts identified to enable flexible cloudification of the protocol stack, adaptive network slicing, and inter-slice control and management.This work has been performed in the framework of the H2020 project 5G-MoNArch co-funded by the E

    Identifying 5G system enhancements: enabling technologies for multi-service networks

    Get PDF
    Proceeding of: 2018 IEEE Conference on Standards for Communications and Networking (CSCN)The fifth generation (5G) of mobile and wireless communications networks aims at addressing a diverse set of use cases, services, and applications with a particular focus on enabling new business cases via network slicing. The development of 5G has thus advanced quickly with research projects and standardization efforts resulting in the 5G baseline architecture. Nevertheless, for the realization of native end-to-end (E2E) network slicing, further features and optimizations shall still be introduced. In this paper, we provide a gap analysis of current 5G system (5GS) with respect to some specific enhancements and detail our insights on the enabling innovations that can fill the identified gaps. We will then discuss the essential building blocks and design principles of an evolved 5G baseline architecture capitalizing on the innovations that are being developed.This work has been performed in the framework of the H2020 project 5G-MoNArch co-funded by the EU

    End-to-End Data Analytics Framework for 5G Architecture

    Get PDF
    Data analytics can be seen as a powerful tool for the fifth-generation (5G) communication system to enable the transformation of the envisioned challenging 5G features into a reality. In the current 5G architecture, some first features toward this direction have been adopted by introducing new functions in core and management domains that can either run analytics on collected communication-related data or can enhance the already supported network functions with statistics collection and prediction capabilities. However, possible further enhancements on 5G architecture may be required, which strongly depend on the requirements as set by vertical customers and the network capabilities as offered by the operator. In addition, the architecture needs to be flexible in order to deal with network changes and service adaptations as requested by verticals. This paper explicitly describes the requirements for deploying data analytics in a 5G system and subsequently presents the current status of standardization activities. The main contribution of this paper is the investigation and design of an integrated data analytics framework as a key enabling technology for the service-based architectures (SBAs). This framework introduces new functional entities for application-level, data network, and access-related analytics to be integrated into the already existing analytics functionalities and examines their interactions in a service-oriented manner. Finally, to demonstrate predictive radio resource management, we showcase a particular implementation for application and radio access network analytics, based on a novel database for collecting and analyzing radio measurements

    D2.1 Performance evaluation framework

    Full text link
    This deliverable contains a proposal for a performance evaluation framework that aims at ensuring that multiple projects within 5G-PPP wireless strand can quantitatively assess and compare the performance of different 5G RAN design concepts. The report collects the vision of several 5G-PPP projects and is conceived as a living document to be further elaborated along with the 5G-PPP framework workshops planned during 2016.Weber, A.; Agyapong, P.; Rosowski, T.; Zimmerman, G.; Fallgren, M.; Sharma, S.; Kousaridas, A.... (2016). D2.1 Performance evaluation framework. https://doi.org/10.13140/RG.2.2.35447.2192
    corecore